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[1] Many important insights regarding the coupling among climate, erosion, and tectonics
have come from numerical simulations using coupled tectonic and surface process models.
However, analyses to date have left the strength of the coupling between climate and
tectonics uncertain and many questions unanswered. We present an approximate analytical
solution for two-sided orogenic wedges obeying a frictional rheology, and in a condition of
flux steady state, that makes explicit the nature and sensitivity of the coupling between
climate and deformation. We make the simplifying assumption that the wedge grows in a
self-similar fashion consistent with Airy isostasy such that topographic taper is invariant
with orogen width, tectonic influx rate, and climate. We illustrate first how and why the
form of the erosion rule matters to orogen evolution and then derive a physically based
orogen-scale erosion rule. We show that steady state orogen width, crest elevation, and
crustal thickness are controlled by the ratio of accretionary flux to erosional efficiency to a
power dictated by the erosion process. Remarkably, we show that for most combinations of
parameters in the erosion law, rock uplift rate is more strongly controlled by erosional
efficiency than it is by the accretionary flux. Further, assuming frontal accretion with no
underplating, the spatial distribution of erosional efficiency dictates the relative rock
uplift rates on the pro-wedge and retro-wedge and the time-averaged trajectories of rocks
through the orogen. The restriction to invariant frictional properties is conservative in
these respects; systems subject to positive feedback between erosion and rheology will
exhibit even stronger coupling among climate, erosion, and deformation than shown
here. INDEX TERMS: 1815 Hydrology: Erosion and sedimentation; 1824 Hydrology: Geomorphology

(1625); 8102 Tectonophysics: Continental contractional orogenic belts; 8107 Tectonophysics: Continental

neotectonics; 8120 Tectonophysics: Dynamics of lithosphere and mantle—general; KEYWORDS: erosion, rock

uplift, critical taper, orogen evolution, stream power
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1. Motivation

[2] The recognition of a dynamic coupling among
climate, erosion, and tectonics that plays a first-order role
in orogen evolution is arguably one of the most interesting
geoscience discoveries in the last 20 years. Numerical
simulations using coupled tectonic and surface process
models [e.g., Avouac and Burov, 1996; Beaumont et al.,
1992, 1996, 2001; Koons, 1989, 1995; Koons et al.,
2002; Willett, 1999a] have clearly demonstrated that the
geodynamics of active orogens is powerfully influenced by
the surface boundary conditions. The efficiency of erosion,
and its concentration on windward slopes, has been shown
to govern steady state orogen width, surface rock
uplift rates, and strain partitioning within the orogen [e.g.,

Beaumont et al., 1992; Beaumont et al., 1996; Willett,
1999a]. Topographic and thermochronologic data from
Taiwan’s Central Range, New Zealand’s Southern Alps,
the Olympics, and the Andes support these findings [Batt et
al., 1999, 2000; Beaumont et al., 1996; Koons, 1995;
Montgomery et al., 2001; Willett and Brandon, 2002;
Willett et al., 2001]. Indeed, the dramatic along-strike
variability in orogen width, depth of exhumation, and rock
uplift rate that characterize the Andes has been attributed to
along-strike differences in climate [Dahlen and Suppe,
1988; Horton, 1999; Masek et al., 1994; Montgomery et
al., 2001].
[3] An implication of these models and data is that at

orogen scale, rock uplift rate is dictated by the erosion rate
rather than vice versa, as is commonly assumed [e.g.,
Howard, 1980; Whipple and Tucker, 1999; Willgoose et
al., 1991]. However, analyses to date have left the
strength of the coupling and feedback between climate
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and tectonics uncertain and many questions unanswered.
For example, given a change in erosional efficiency (say,
related to an increase in mean annual precipitation or the
frequency of large storms), how much does rock uplift rate
increase in response? How is the change in rock uplift rate
induced? Is rock uplift rate more strongly controlled by
erosional efficiency or by accretionary flux? What is the
influence of the efficiency of recycling of sediment de-
posited in the foreland back into the orogen? Is it
necessary to always use fully coupled models, or can the
fundamental characteristics of the dynamic feedbacks
among climate, erosion, and tectonics be established in
simple, general, and quantitative terms? In addition, it has
remained unclear whether the details of the erosion pro-
cesses are important to the geodynamic evolution of the
orogen and if so, how they come into play. Perhaps it is
for these reasons that geomorphologists commonly treat
uplift as an independent variable, often driving models
with ‘‘uniform block uplift’’ [e.g., Howard, 1994; Tucker,
1996; Whipple and Tucker, 1999; Willgoose et al., 1991].
Although this can be a useful device for exploring aspects
of landscape evolution, its prevalence as a model boundary
condition suggests that the implications of recent work
with coupled tectonic and surface process models have not
been fully appreciated.

2. Approach and Scope

[4] The goal of this paper is to elucidate the essential
nature of the interactions between climate-driven erosion
and tectonics. To achieve this goal, we pursue an approx-
imate analytical solution such that the various controls on
system behavior and the sensitivity of the coupling
between erosional efficiency and rock uplift rate, for
instance, can be explicitly stated. Simplifications are made
to allow this analytical formulation. We restrict our anal-
ysis to two-sided orogenic wedges obeying a frictional
rheology and in a condition of flux steady state [Willett
and Brandon, 2002]. We focus on the idealized steady
state condition in order to draw out the fundamental
aspects of the problem, not because we believe that this
condition is commonly attained in nature. The mechanics
of frictional orogenic wedges predict the development and
maintenance of a critical taper geometry [e.g., Dahlen,
1984; Davis et al., 1983] characterized by the minimum
critical taper [Dahlen, 1984] on the pro-wedge side and
the maximum critical taper on the retro-wedge side
(terminology as per Willett et al. [1993]). Figure 1 illus-
trates two orogens with well-defined two-sided wedge
geometries with steeper retro-wedges. Here we assume
strict adherence to this simple critical taper wedge geom-
etry. Further, we make the simplifying assumption that the
mean topographic gradient (tan a in the terminology of
Davis et al. [1983]) is invariant with orogen width,
tectonic influx rate, climate, and time. This implies that
frictional properties, pore pressures, and the dip of the
basal decollement are similarly invariant. Although we
acknowledge that many factors may produce deviations
from this simplest model (e.g., stratigraphic control of
the basal decollement, including inherited sedimentary
basin geometry and rotation in response to isostatic com-
pensation of crustal thickening [Boyer, 1995; Lawton et

al., 1994], potential climatic and tectonic influences
on basal pore pressures [Saffer and Bekins, 2002], etc.),
the imposed self-similar growth of the orogenic wedge
is consistent with maintenance of Airy isostatic compen-
sation of the thickening wedge, as will be assumed
here.
[5] Dahlen and colleagues demonstrated in the late 1980s

and early 1990s that the erosion rate controls steady state
(flux mass balance) wedge width and that deformation
patterns are largely dictated by surface erosion [Dahlen,
1988, 1990; Dahlen and Barr, 1989; Dahlen and Suppe,
1988]. However, these authors employed an arguably over-
simplified erosion rule, in which erosion rate was either
held constant (independent of the topography) or increased
linearly with elevation in a one-sided wedge with a rigid
backstop. Driven in part by interest generated by these
papers and by the numerical modeling efforts that followed
[e.g., Avouac and Burov, 1996; Beaumont et al., 1992,
1996; Koons, 1989, 1995; Willett, 1999a; Willett et al.,
1993, 2001], the last decade has seen an intense flurry of
research on the processes and rates of erosion in bedrock
channels. Bedrock channels have been the focus of atten-
tion because they dictate much of the relief structure of
mountainous areas, communicate signals of tectonic, cli-
matic, and eustatic change across landscapes, and ulti-
mately set regional rates of denudation [e.g., Burbank et
al., 1996; Howard et al., 1994; Whipple and Tucker, 1999].
Although many important questions remain in the study of
bedrock channels and the controls on their incision rates,
we are now in a position to extend the work of Dahlen and
colleagues [Dahlen, 1988, 1990; Dahlen and Barr, 1989;
Dahlen and Suppe, 1988] by adopting a more realistic
erosion model and generalizing the treatment for applica-
tion to two-sided wedges [e.g., Koons, 1990; Willett et al.,
1993].
[6] The approximate analytical solution for steady state

orogen width, orogen-scale strain partitioning, and rock
uplift rates presented here consists of two parts. The first is
essentially a statement of mass balance in an orogenic
wedge at flux steady state (as per Willett and Brandon
[2002]). The solution combines the geometric constraints
of critical taper theory with geomorphic constraints on
erosion rates consistent with this topography to find the
wedge width required to satisfy the mass balance condi-
tion. We assume that erosion rates are dictated by the
bedrock channel network and are described by the stream
power model of bedrock channel incision [e.g., Howard
and Kerby, 1983; Howard et al., 1994; Whipple and
Tucker, 1999]. A similar approach has been taken by
Hilley et al. [2004] and Hilley and Strecker [2004] in an
analysis of one-sided frictional wedges with a fixed root-
ing depth for the basal detachment. Their analysis is,
however, different from ours in some important details
and focuses on different, complementary issues. Here we
explore system sensitivity to accretionary flux, erosional
efficiency (set by rock properties, channel morphology and
bed state, and climate), and the first-order orographic
distribution of precipitation (pro-wedge versus retro-wedge
rainfall). Although the stream power model should be
considered a simple, empirical, and incomplete approxi-
mation to the behavior of a complex suite of processes
[e.g., Hancock et al., 1998; Sklar and Dietrich, 1998,
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2001; Whipple and Tucker, 2002; Whipple et al., 2000],
it is sufficiently general and its dynamics sufficiently
well known to allow elucidation of how and why the
details of the geomorphic process law matter to orogen
evolution.
[7] The second part of the solution presented here is an

extension of the kinematic model for time-averaged parti-
cle paths through an orogenic wedge developed by Dahlen
and colleagues [Dahlen, 1988; Dahlen and Barr, 1989;
Dahlen and Suppe, 1988]. Importantly, in this part of the
model we can relax assumptions made in the application
of the stream power incision model and thus gain addi-
tional insight into the importance of the details of the
erosion rule. Batt et al. [2001] used a similar approach
with an arbitrary, but empirically constrained, erosion
function in their analysis of thermochronologic data for
the Olympic Mountains in Washington State. We use this
approach to highlight the potential importance of factors
that may influence the relation between channel concavity

and downstream variations in erosion rate, such as the
intrabasin orographic distribution of precipitation [Roe et
al., 2002, 2003], and downstream changes in sediment
flux, amount of alluvial cover, bed material grain size
[Massong and Montgomery, 2000; Sklar and Dietrich,
1998, 2001; Slingerland et al., 1997; Whipple and Tucker,
2002], channel width [Montgomery and Gran, 2001;
Snyder et al., 2003a], and the frequency of occurrence
of erosive debris flows [Stock and Dietrich, 2003].

3. Erosion and Rock Uplift

[8] At orogen scale, erosion and rock uplift are intimately
linked. Consideration of a very simple orogenic system
reveals the nature of this linkage and helps motivate our
analysis. Imagine an orogen of constant width (W), iso-
statically compensated, experiencing homogeneous pure
shear deformation and with a fixed accretionary influx
per unit distance along strike (FA(m

2 yr�1)) (Figure 2).

Figure 1. Example topographic cross sections of active orogens illustrating typical two-sided tapered
wedge forms: (a) Central Range of Taiwan and (b) Indo-Burman Range. Plotted are maximum
(diamonds), mean (squares), and minimum (triangles) elevations in �50-km-wide swath profiles taken
from the GTOPO-30 30-arc-second (�1 km) resolution digital elevation model. Straight lines are linear
regressions to the mean elevations, shown only to demonstrate the close approximation to a critical taper
form.
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With no erosion, near-surface rock uplift rate (U) is set by
isostatic compensation of crustal thickening (U � ((rm �
rc)/rm)FA/W). With erosion that increases with topographic
slope or relief, the system will evolve to a steady state
where the topographic slope has increased such that ero-
sional efflux (FE) matches the accretionary influx (FA).
Under this condition, all accreted material is removed
through the surface rather than mostly being stuffed into
the crustal root, and steady state rock uplift rate increases by
a factor of �6 (rm/(rm � rc)) to U = FA/W (Figure 2), where
rm and rc denote mantle and crust densities as discussed by
Molnar and England [1990], respectively. Thus rock uplift
is dominantly a response to erosion. However, so long as
the conditions of constant orogen width and homogeneous
pure shear deformation are maintained, changes in climate-
controlled erosional efficiency can influence only the form
of the steady state topography, not the rock uplift rate (at
steady state, U = FA/W for all climates (Figure 2)). This is
the scenario implicitly considered in many analyses that
impose an invariant ‘‘tectonic’’ uplift rate [e.g., Whipple,
2001; Whipple et al., 1999]. One may infer that a more
interesting dynamic coupling between erosional efficiency
and rock uplift rate can only occur where the intensity or
spatial distribution of erosion can induce a concentration of
strain, either through narrowing of the orogen or through the
development of discrete shear zones that accommodate
focused uplift, as seen in some coupled thermomechani-
cal–surface process models [e.g., Beaumont et al., 1996;
Willett, 1999a]. Critical taper theory [Dahlen, 1984; Dahlen
and Suppe, 1988; Dahlen et al., 1984; Davis et al., 1983]
provides a framework for considering how erosional effi-
ciency may influence orogen width, rock uplift rate, and
deformation within the wedge, thereby allowing an explo-
ration of the dynamic coupling between climate-driven
erosion and tectonics.

4. General Relations for Mass Balance, Steady
State Wedge Geometry, and Rock Uplift Rates

[9] A closed form solution for the interrelations among
steady state orogen width, rock uplift rate and pattern, and
climate can be found by combining (1) a statement of mass

balance in a steady state orogenic wedge, (2) the geometry
dictated by critical taper theory for a frictional wedge (e.g.,
Figures 1 and 3), and (3) an orogen-scale erosion rule. Here
we explore a generic orogen-scale erosion rule to highlight
the importance of its correct formulation.

4.1. Mass Balance

[10] A statement of mass balance for a steady state
orogenic wedge (where accretionary influx balances the
erosional efflux) can be written as

FA ¼ UpWp þ UrWr; ð1Þ

where we define FA to be the total accretionary flux per unit
distance along strike (m2 yr�1) (including any recycled
sediment eroded off pro-wedge), Up to be the average rock
uplift (or erosion) rate in pro-wedge, and Ur to be the
average rock uplift (or erosion) rate in retro-wedge (m yr�1)
(Figure 3). Wp and Wr denote the plan view width of the
pro-wedge and retro-wedge, respectively (m) (Figure 3). We
define rock uplift rate (Up, Ur) as the rate of rock uplift
relative to the geoid, measured at the Earth’s surface. Note
that the vertical component of rock motion is generally
expected to vary with depth in a deforming orogenic wedge
[e.g., Dahlen, 1988; Dahlen and Barr, 1989]. Rock uplift
rate defined in this way is by definition equal to the erosion
rate at flux steady state [England and Molnar, 1990]. Our
discussion is cast in terms of near-surface rock uplift rate
(U) (rather than erosion rate) in order to (1) emphasize the
control of climate-determined and lithology-determined
erosional efficiency on the deformation and uplift of rock
and to (2) accommodate subsequent work on unsteady
orogen evolution, where erosion rate and rock uplift rate are
not equal.
[11] Equation (1) can be rewritten in a convenient form

by defining l as the fraction of the total accretionary flux
that is eroded off the pro-wedge side:

Up ¼
lFA

Wp

ð2aÞ

Ur ¼
1� lð ÞFA

Wr

: ð2bÞ

[12] The total accretionary flux can then be written in
terms of the incoming flux of new material (FA0

) by defining

Figure 2. Cartoon illustration of a constant width orogen
subjected to homogeneous pure shear deformation and
maintained at Airy isostatic compensation. The steady state
rock uplift rate is given by the accretionary flux divided by
wedge width. In this idealized scenario, no dynamic
coupling between erosional efficiency and steady state rock
uplift rate is possible.

Figure 3. Definition sketch defining assumed geometry of
the wedge and the major variables discussed in the text.
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x as the fraction of material eroded off the pro-wedge that is
recycled back into the orogen (Figure 3):

FA ¼ FA0

1� xlð Þ ð3aÞ

FA0
¼ VxH ; ð3bÞ

where x and l range from 0 to 1 by definition, Vx is the plate
convergence velocity (m yr�1), and H is the thickness of the
incoming plate (including any overlying sediments) that is
involved in deformation (m). One might ask how steady state
can be achieved if all material eroded off the pro-wedge is
recycled back into the orogen (x = 1). The answer is simply
that the erosional flux off the retro-wedge (FEr) must balance
the far-field tectonic flux (FA0

). The case of l = 1 (zero
erosion on the retro-wedge) is equivalent to the solution for a
one-sided wedge with a rigid backstop, in which case a steady
state solution is not possible for x = 1 (total accretionary
influx grows without bound (equation (3a), precluding a
steady state in this case only).

4.2. Critical Taper Geometry

[13] Given that the mean topographic relief between
the range crest and foreland (R) is given by the product
of wedge width (W) and the topographic taper (tan a),
and must be the same for pro-wedge and retro-wedge
(Figure 3), the geometry of the deforming wedge can be
expressed as

Wr

Wp

¼ tanap

tanar

; ð4Þ

where ap and ar denote the taper angle of the mean
topography on the pro-wedge and retro-wedge, respectively
(Figure 3). For a given set of frictional properties and pore
pressure conditions, ap is dictated by the inclination of the
pro-wedge basal detachment and the minimum critical taper,
whereas ar is dictated by the inclination of the retro-wedge
thrust and the maximum critical taper angle [Dahlen, 1984;
Willett et al., 1993].
[14] As a first approximation, we assume that ap and ar

are invariant with orogen width, accretionary flux, and
climate. Obviously, this is a simplification of a complex
problem, particularly in thin-skinned fold and thrust belts,
where detachment surfaces are often stratigraphically con-
trolled and thus depend on initial sedimentary basin geom-
etry, may change during growth and widening of the wedge,
and may be rotated to steeper angles as the growing wedge
is isostatically compensated [e.g., Boyer, 1995; Lawton et
al., 1994]. Nonetheless, both the constant taper angle
assumed here and the associated self-similar growth of the
wedge are consistent with Airy isostatic compensation of
the thickening orogenic wedge. Airy isostatic compensation
is thus implicitly assumed in our analysis.

4.3. Importance of the Erosion Rule

[15] Once an erosion rule is specified, equations (2)–(4)
can readily be solved for steady state orogen width and
therefore rock uplift rate as a function of accretionary flux,
erosional efficiency, and wedge geometry. A difficulty is

that a process-based, orogen-scale erosion rule has never
been derived. This is a key goal of this paper, addressed in
section 5. We begin here with a very general erosion rule to
illustrate how and why the form of the erosion rule is
important and to place our analysis into context with
previous work.
[16] One may infer that the orogen-scale average erosion

rate (E (m yr�1)) must depend (at least) on both orogen
width and the mean topographic gradient. We posit a simple
power law form for our general erosion law:

E ¼ CWa tanað Þb; ð5Þ

where C is a dimensional coefficient of erosional efficiency
(m1�a yr�1) (set by climate, rock properties, and channel
characteristics) and a and b are positive constants set by the
physics of erosion and the network geometry and relief
structure of drainage basins. Note that previous analytical
work on this problem either assumed a constant erosion rate
with no relation to the topography (a = b = 0) or a relation in
which mean erosion rate scaled with mean elevation or
equivalently total relief (a = b = 1) [see Dahlen and Barr,
1989; Dahlen and Suppe, 1988, and references therein].
These previous efforts were further limited to a one-sided
wedge with no recycling of material (l = 1; x = 0).
[17] At flux steady state, E = U by definition, and

equation (5) may be substituted into equation (2a) to solve
for steady state pro-wedge width (Wp):

Wp ¼
lFA

Cp

� � 1
aþ1

tanap

� � �b
aþ1; ð6Þ

where Cp is the erosional efficiency on the pro-wedge.
Substituting equation (6) back into equation (2a), we can
also readily solve for the steady state pro-wedge rock uplift
rate (Up):

Up ¼ lFAð Þ
a

aþ1 C
1

aþ1
p tanap

� � b
aþ1: ð7Þ

Solutions for the retro-wedge differ only in that Wp, Up, Cp,
tan ap, and l are replaced by Wr, Ur, Cr, tan ar, and 1 � l,
respectively. Recall that FA is the total accretionary flux,
including any recycled sediment, as defined in equation (3).
[18] Several conclusions can be drawn immediately. First,

for all exponent values, steady state wedge width is equally
sensitive to accretionary flux (FA) and the inverse of
erosional efficiency (C�1). This sensitivity is set by the
relation between mean erosion rate and wedge width
(exponent a). Second, the relative sensitivity of steady state
rock uplift rate to accretionary flux and erosional efficiency
also depends on the exponent a: Rock uplift rate is more
sensitive to erosional efficiency for a < 1 and more sensitive
to accretionary flux for a > 1. Third, in the case a = 0
considered in many previous works [e.g., Barr and Dahlen,
1989; Dahlen, 1988, 1990], rock uplift rate is linearly
dependent on the erosional efficiency and independent of
accretionary flux. In contrast, the a = 1 case considered by
Dahlen and Suppe [1988] and Dahlen and Barr [1989],
rock uplift rate is set by the square root of the ratio of
accretionary flux to erosional efficiency. Thus Dahlen and
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Barr’s [1989, p. 3911] conclusion that the form of the
erosion law is not important is incorrect and stems from
their limited analysis of this aspect of the problem.
[19] In the above the dependence of erosion rate on mean

topographic gradient does not appear, at first glance, to play
an important role. It does, however, importantly influence
the relative rate of erosion on the pro-wedge and retro-
wedge sides of the orogen, which in turn sets l, the fraction
of material eroded off the pro-wedge. This can be seen by
writing the ratio of Ep/Er (denoted below as f) using
equation (5), assuming a and b are the same on the pro-
wedge and retro-wedge and noting that at flux steady state,
Ep/Er = Up/Ur by definition:

f ¼ Up

Ur

¼ Cp

Cr

tanap

tanar

� �b�a

: ð8Þ

Note that the Cp/Cr ratio reflects not only climatic but also
lithologic differences between the pro-wedge and retro-
wedge. Combining equation (8) with the mass balance
constraint yields an expression for the fraction of total
accretionary flux that is eroded off the pro-wedge (l). This
is found by taking the ratio of equations (2a) and (2b),
substituting f for the Up/Ur ratio (as defined in equation (8)),
and solving for l using equation (4):

l ¼ f
tanap= tanar

� �
þ f

: ð9Þ

[20] Since tanar > tanap [Dahlen, 1984], for uniform
erosional efficiency (Cp/Cr = 1), erosion rates (and rock
uplift rates) will be equal on the pro-wedge and retro-
wedge sides of the orogen if and only if a = b (i.e., for a
simple power law relation between mean elevation (or
total relief) and erosion rate). Other combinations of a and
b will importantly influence l, a measure of strain parti-
tioning between the pro-wedge and retro-wedge. In addi-
tion to its role in equations (6) and (7), it will be shown
later that for frontal accretion without underplating, l
largely dictates particle trajectories through the orogen
and thus exerts a fundamental control on particle pres-
sure-temperature-time paths and the spatial distribution of
both the metamorphic grade of exposed rocks and ther-
mochronologic ages [e.g., Barr and Dahlen, 1989; Barr et
al., 1991; Batt and Brandon, 2002; Batt et al., 2001;
Dahlen and Barr, 1989; Dahlen and Suppe, 1988; Koons,
1987; Willett and Brandon, 2002]. Thus it is clear that the
form of the erosion law plays a critical role in the
interaction between surface processes and geodynamic
evolution of a two-sided orogenic wedge. The relations
among model parameters (C, a, b), the processes of
erosion, and environmental conditions (climate, lithology)
therefore stand out as important unknowns.

5. An Orogen-Scale Erosion Rule

[21] In order to derive a physically based orogen-scale
erosion rule, we start by considering the steady state
relationship between erosion rate (or rock uplift rate) and
topography. We write relations for steady state topography
in terms of the simple detachment-limited stream power

river incision model [Howard et al., 1994; Whipple and
Tucker, 1999]. The stream power incision model can be
considered a placeholder for more sophisticated models as
advances are made. However, it is important to note that the
solution developed here rests on three core assumptions and
beyond these is not strongly tied to the stream power
incision model and its potential limitations. The three
fundamental assumptions are that (1) equilibrium river
profiles maintain a form captured by the commonly seen
power law relation

S ¼ ksA
�q; ð10Þ

where S is local channel gradient, A is upstream drainage
area (m2), ks is the steepness index (positive) (m2q), and q is
the concavity index; (2) there is a power law relationship
between the steepness index and both rock uplift rate and
erosional efficiency; and (3) the concavity index (q) is
invariant with both rock uplift rate and erosional efficiency.
The first is strongly supported empirically [e.g., Flint, 1974;
Kirby and Whipple, 2001; Kirby et al., 2003; Sklar and
Dietrich, 1998; Snyder et al., 2000; Tarboton et al., 1989;
Tucker and Whipple, 2002] and appears to hold for both
detachment-limited and transport-limited conditions, even
in some (but not all) systems that appear to be far from
equilibrium [Whipple and Tucker, 2002; Willgoose, 1994].
The second and third requirements are more controversial
and therefore most limiting [Sklar and Dietrich, 1998, 2001;
Stock and Dietrich, 2003], but as shown in Figure 4, they
are also well supported where field constraints allow direct
testing of the hypothesis that these assumptions are valid
[Kirby and Whipple, 2001; Kirby et al., 2003; Snyder et al.,
2000, 2003b; Wobus et al., 2003].
[22] The detachment-limited stream power model satis-

fies all three conditions (as do standard transport-limited
models and certain hybrid models [see, e.g., Whipple and
Tucker, 2002]). Even where assumptions 2 and 3 appear
robust, however, several incompletely understood factors
influence the quantitative relationships among channel
steepness, rock uplift rate, and climate, including dynamic
adjustments in channel width [Montgomery et al., 2002;
Snyder et al., 2003a], sediment flux, percent alluvial bed
cover, bed load grain size distribution [Hancock and
Anderson, 2002; Massong and Montgomery, 2000; Sklar
and Dietrich, 1998, 2001; Whipple and Tucker, 2002],
channel hydraulic roughness, the relative importance of a
critical shear stress for incision [Snyder et al., 2003b;
Tucker, 2004], the relative importance of debris flow scour
[Stock and Dietrich, 2003], and orographic precipitation
feedbacks [Roe et al., 2002, 2003]. Although we do not
tackle these problems here, our analysis will show how
important these factors, through their influence on the rates
and patterns of bedrock channel incision, can be in orogen
evolution. Thus the detachment-limited stream power inci-
sion model is sufficiently robust and general for our present
purposes.

5.1. Steady State Fluvial Relief

[23] Given the three assumptions stated above, fluvial
relief (Rf) is given by integrating equation (10), using
Hack’s law (A = kax

h) [Hack, 1957], from the basin outlet
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(x = L) to the fluvial channel head (x = xc), as shown by
Whipple and Tucker [1999]:

Rf ¼ ksk
�q
a 1� hqð Þ�1

L1�hq � x1�hq
c

� �
: ð11Þ

Note that ka is a dimensional coefficient (m2�h). In the
particular case of the detachment-limited stream power
model at steady state,

E ¼ U ¼ KAmSn; ð12Þ

where E is erosion rate (myr�1), K is a dimensional
coefficient of fluvial incision (m1�2m yr�1), and channel
steepness and concavity indices are given by ks = (U/K)1/n

and q = m/n, respectively. We substitute these definitions for
ks and q for the stream power model at steady state into
equation (11) to write fluvial relief as [Whipple and Tucker,
1999]

Rf ¼ U 1=nK�1=nk�m=n
a 1� hm

�
n

� ��1
L1�hm=n � x1�hm=n

c

� �
: ð13Þ

[24] The difference term involving xc in equation (13) is
awkward for the derivation below. For orogen-scale drain-

ages like those of interest here, L is on the order of 20–
200 km and xc is on the order of 0.1–1 km, suggesting that
the assumption L � xc may be made. However, the
exponent (1 � hm/n) is typically around 0.15 ± 0.1, and
while L1�hm/n > xc

1�hm/n, dropping the xc term can be
somewhat problematic for certain combinations of model
parameters (low values of 1 � hm/n), though as we will see
does not, in fact, much affect our analysis. Nonetheless, we
can deal with this difficulty through a dimensionless cor-
rection factor (k0), defined by

Rf ¼ U1=nK�1=nk�m=n
a 1� hm

�
n

� ��1
L1�hm=n

� �
k0 ð14aÞ

k0 ¼ 1� xc=Lð Þ1�hm=n; ð14bÞ

where k0 may be expected to be of order unity but varies
with L, xc, and the exponent 1 � hm/n, unless the
approximation L1�hm/n � xc

1�hm/n holds. For L � xc the
relation between k0 and L can be approximated as a power
law, which is convenient for our analysis. We turn to
regression analysis to evaluate the robustness of a power

Figure 4. Example slope-area relationships for two field areas with known spatial patterns in rock uplift
rate. (a) King Range, Mendocino Triple Junction region, northern California [Merritts and Bull, 1989;
Snyder et al., 2000]. (b) San Gabriel Mountains, southern California [Blythe et al., 2000]. These data
illustrate the typical scaling relation between channel gradient (‘‘slope’’) and upstream drainage area
(equation (10)). Importantly, in both field settings the steepness index (ks) alone varies with rock uplift
rate; the low-uplift (gray crosses and open squares for log-bin average values) and high-uplift zone (black
crosses and solid squares for log-bin average values) slope-area arrays are subparallel in both cases.
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law approximation and find it valid, provided (xc/L)
1�hm/n is

less than �0.6 or for L > 20 km (the smallest system size of
interest here), given the typical range of xc (0.1–1 km) and
the hm/n ratio (0.85 ± 0.1).
[25] The correction factor, k0, varies from 0.4 to 0.85 (low

k0 values correspond to low values of exponent 1 � hm/n)
and is a power law function of channel length (L):

k0 ¼ k*L
q; ð15Þ

where k* is a dimensional coefficient (m�q) and R2 > 0.99
for all reasonable values of h, m/n, and xc. Both k* and
q vary slightly with xc and the exponent 1 � hm/n.
Computing k* and q values for a reasonable range of xc and
the exponent 1 � hm/n and regressing the results for a
typical xc (0.5 km) against 1 � hm/n, we find the following
relations:

q ¼ 0:20� 0:32 1� hm=nð Þ; R2 ¼ 0:998; ð16aÞ

k* ¼ 1:38 1� hm=nð Þ0:85; R2 ¼ 0:999: ð16bÞ

[26] In equation (16a) the coefficient is invariant with xc
in the range 0.1–1 km, and the constant varies only by
±0.03. In equation (16b) the coefficient and exponent each
vary only by ±0.06 with xc over this same range. Thus for
the typical range of h, m/n, and xc, regression parameters in
equation (15) vary only slightly around their mean values
(q = 0.12 ± 0.03 with either xc or 1 � hm/n; k* = 0.42 ±
0.12 with 1 � hm/n and 0.42 ± 0.06 with xc). Therefore the
convenient approximation in equation (14a) is reasonably
accurate, with k* = 0.4 and q = 0.1 in equation (15).
Greater precision can be achieved by using the relations in
equation (16), as is done below. Making the simple
assumption that L1�hm/n � xc

1�hm/n would be equivalent
to assuming k* = 1 and q = 0.
[27] In order to proceed, we must relate channel length (L)

to orogen half width (W). Studies of drainage network
structure have generally found the relation between channel
length and axis-parallel basin length (equivalent to the
orogen half width,W, for themajor transverse drainage basins
with their headwaters at the divide) is approximately linear,
with a proportionality constant of order unity [Maritan et al.,
1996; Rigon et al., 1996; Tarboton et al., 1988, 1989]. This
finding is also clearly illustrated by the fact that whereas the
reciprocal of the Hack exponent (h) is always close to but just
less than 2 [Maritan et al., 1996; Rigon et al., 1996; Tarboton
et al., 1988, 1989], Montgomery and Dietrich [1992] found
that basin area was related to the square of axis-parallel basin
length over many orders of magnitude. These results are only
mutually compatible if there is an approximately
linear relation between L and W, which we assume here:

L ¼ k1W ; ð17Þ

where k1 is a dimensionless coefficient of order unity.
Any deviation from the linear relation assumed in
equation (17) is minor and will not significantly influence
our analysis.

[28] Finally, using equations (14), (15), and (17), fluvial
relief on pro-wedge and retro-wedge sides of orogen can be
written as

Rp ¼ U1=n
p K�1=n

p cW 1�hm=nþq
p ; ð18Þ

Rr ¼ U1=n
r K�1=n

r cW 1�hm=nþq
r ; ð19Þ

c ¼ k*k
1�hm=nþq
1 k�m=n

a 1� hm
�
n

� ��1
; ð20Þ

where Kp and Kr denote the coefficient of erosion (reflecting
both climatic and lithologic differences) on the pro-wedge
and retro-wedge, respectively, and we have assumed that (1)
U is approximately constant on either side of the wedge and
that (2) k*, k1, ka, h, m, and n are the same on the pro-wedge
and retro-wedge such that c is a (dimensional) constant
(mhm/n�2m/n�q). Close agreement in k*, k1, ka, and h on
either side of the orogen is expected, so this assumption is
not particularly restrictive. The assumption that the effective
values of m and n are the same on both sides is more
restrictive as notable differences in these parameters with
climate state, rock type, critical shear stress, and sediment
flux and caliber are certainly plausible [Hancock et al.,
1998; Sklar and Dietrich, 1998, 2001; Snyder et al., 2003b;
Whipple and Tucker, 2002; Whipple et al., 2000; Whipple
and Tucker, 1999]. Although no specific evidence that this
is indeed the case in any orogen has yet been published,
holding m and n equal on either side of the range and
invariant with climate, lithology, and rock uplift rate must
be regarded as a simplifying assumption necessary to make
an analytical solution tractable. The assumption that Up and
Ur are approximately constant (but not necessarily equal)
will be relaxed later in the kinematic solution for particle
trajectories through the wedge, allowing us to explore just
how sensitive orogen evolution is to the details of the
erosion process law.

5.2. Channel Profiles and the Mean Topographic
Gradient

[29] Further progress requires defining the quantitative
relationship between the gradients, drainage areas, and
spatial distribution of bedrock channels driving the erosion
(as represented in equations (18) and (19)) and the regional
gradient of the mean topography (tan a) that is set by the
mechanics of the deforming wedge. If this can be achieved,
predictions of steady state orogen width, relief, rock uplift
rates, crustal thickness, and their sensitivity to variables like
the accretionary flux and erosional efficiency can be made,
thus elucidating the salient characteristics of the dynamic
coupling between climate-driven erosion and tectonics.
[30] Incision occurs on bedrock channel floors throughout

the channel network and is driven by flow discharge,
sediment flux and grain size, and channel gradient [e.g.,
Howard and Kerby, 1983; Howard et al., 1994; Sklar and
Dietrich, 1998, 2001; Whipple and Tucker, 1999, 2002].
However, it is the mean topography that is relevant to the
geodynamics of the orogen. This difference in scale is a
problem hidden in most coupled tectonic and surface
process models of actively eroding orogens. One cannot
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simply apply rules developed for bedrock channels to a
mean topographic profile without defining the relation
between channel longitudinal profiles and the mean topo-
graphic gradient. Although this appears to be a dauntingly
complex problem involving the full richness of drainage
network topology and controls on hillslope length and
gradient to define a ‘‘relief function’’ that relates a channel
profile to ridgelines and the regional mean topographic
gradient, we present a simple, empirically supported, ap-
proximate relationship between them.
[31] As stated earlier, the mean elevation of the divide

(above the foreland) of a two-sided orogenic wedge is, by
definition, given by the product of wedge half width (e.g.,
Wp) and the critical topographic taper (e.g., tan ap). Given
that (1) the fluvial relief (Rf) of major drainage basins that
rise on the divide must scale with the mean elevation of the
range crest and that (2) trunk channel length scales approx-
imately linearly with wedge half width (equation (17)),
inspection suggests that the ratio of fluvial relief to trunk
channel length scales approximately linearly with the mean
topographic gradient. Although this step may seem an
oversimplification, the expected relation is empirically ob-
served to be linear with a dimensionless prefactor (k2 in
equation (21a)) of order unity (Figure 5):

Rf

L
¼ k2 tana ð21aÞ

Rf

W
¼ k1k2 tana: ð21bÞ

Figure 5a shows a test of this hypothesis using a composite
of data from natural examples (Central Range of Taiwan
and the Indo-Burman Range, shown in Figure 1) and from
synthetic steady state landscapes computed using the
Geomorphic/Orogenic Landscape Evolution Model (de-
scribed by Tucker and Slingerland [1996]). The result is
quite satisfying: There is an approximate 1:1 relationship
between Rf/L and tan a (i.e., equation (21a) holds with
k2 � 1). Although some complexity is evident (Figure 5a)
and will be discussed in section 8.6, equation (21) appears
sufficiently robust to proceed.

5.3. Derivation of the Erosion Rule

[32] The approximate relation above (equation (21b))
allows us to write the erosion rule of equation (12) in terms
of orogen width (W) and regional topographic gradient
(tan a). The key is to find the relationship between steady
state channel gradient at the mountain front (SL) and tan a.
This is done by solving equation (12) for SL, usingHack’s law
to write the main stem drainage area at the mountain front in
terms of channel length (L), substituting in the solution for
steady state fluvial relief (equation (18) or (19)), and, finally,
substituting equation (21b) into this expression for steady
state channel gradient at the mountain front:

SL ¼ k�1

* k
�q
1 k2 1� hm

�
n

� �
W�q tana: ð22Þ

Using Hack’s law and equation (17) to write main stem
drainage area at the mountain front in terms of orogen width

(W) (A = kak1
hWh) and substituting this expression and

equation (22) into equation (12) gives

E ¼ U ¼ K 0Whm�qn tanað Þn ð23aÞ

K 0 ¼ Kk�n

* k
hm�qn
1 kn2k

m
a 1� hm

�
n

� �n
; ð23bÞ

which holds for either side of the wedge (e.g., with Up, Wp,
tan ap, and Kp for the pro-wedge). Equation (23a) is
equivalent to the general erosion law introduced earlier
(equation (5)), with C = K0, a = hm � qn, and b = n. Note
that K0 is a dimensional coefficient (m1�hm+qn yr�1) that is
linearly related to the coefficient of fluvial incision (K). Note
that this expression is derived directly from the river incision
rule of equation (12) using only the geometric approxima-
tions in Hack’s law, equation (17), and equation (21b) and
no other considerations related to the mechanics of a brittle
wedge or the formulation of the tectonic problem addressed
in this paper.
[33] Although equations (23a) and (23b) look complex,

we emphasize that k*, k1, k2, ka, h, q, and the ratio m/n are
essentially geometric constants with a fixed, narrow range
of values: �0.4, �1, �1, �6.7, �1.67, �0.1, and �0.5,
respectively. These parameters are included here mostly for
completeness; system behavior depends primarily on the
parameters in the stream power incision model (K, m, and n
in equation (12)). However, in practice, it is critical to
remember that K0, K, k*, and ka are dimensional constants
with dimensions that depend on model parameters m, n, h,
and q: One can not freely vary these model exponents
while holding K0, K, k*, and ka at fixed values and expect
to get reasonable predictions of orogen width, rock uplift
rate, and so forth. Careful tracking of dimensions and
application of the internal relations among various interde-
pendent model parameters is critical. See Whipple and
Tucker [1999] for a complete derivation of the coefficient
of fluvial incision (K), including internal relations that
determine its dimensionality. As discussed elsewhere
[Hancock et al., 1998; Whipple et al., 2000; Whipple and
Tucker, 1999], model exponents m and n depend on the
physics of fluvial incision into rock, with the slope expo-
nent (n) plausibly ranging from 2/3 to 5/3, depending on
the dominant incision process. In addition, internal feed-
backs in the river incision process not explicitly treated in
the stream power model (such as adjustments in channel
width, bed state, orographic enhancement of precipitation,
and the relative importance of a critical shear stress
for incision) may be manifest as higher effective values
of n [e.g., Snyder et al., 2000, 2003a, 2003b; Tucker, 2004]
as these can importantly influence the quantitative relation-
ship between channel steepness and rock uplift rate (ks =
(U/K)1/n for the detachment-limited stream power incision
model).

6. Implications for Feedback Between Climate-
Driven Erosion and Tectonics

[34] From the preceding analysis we see that the
relationship among steady state pro-wedge width, accre-
tionary flux, and erosion model parameters can be found by
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substituting C = K0, a = hm � qn, and b = n into
equation (6):

Wp ¼ tanap

� � �n
hm�qnþ1 lFAð Þ

1
hm�qnþ1K

0 �1
hm�qnþ1
p ; ð24Þ

where FA is the total accretionary flux, including any recycled
sediment (see equation (3)). Similarly, the relationship
among steady state pro-wedge rock uplift rate, accretionary
flux, and erosion model parameters can be found by
substituting C = K0, a = hm� qn, and b = n into equation (7):

Up ¼ tanap

� � n
hmþ1�qn lFAð Þ

hm�qn

hm�qnþ1K
0 1
hm�qnþ1
p : ð25Þ

As noted earlier, solutions for the retro-wedge differ only in
thatWp,Up,Kp

0 , tanap, andl are replaced byWr,Ur,Kr
0 , tanar,

ar, and 1 � l, respectively.

[35] Figures 6a and 6b illustrate how the relations for mass
balance and the orogen-scale erosion rule together dictate
steady state wedge width and rock uplift rate (illustrated for
the pro-wedge only, assuming Kr = Kp). The nature of the
dynamic coupling between erosional efficiency and rock
uplift rate is illustrated in Figure 6a, and that between
accretionary flux and rock uplift is illustrated in Figure 6b.
An increase in erosional efficiency induces a significant
increase in rock uplift rate, damping the sensitivity
of landscape relief to climate change [Whipple et al.,
1999]. Controls on exponent values and implications of
equations (24) and (25) are discussed in sections 6.1 and 6.2.
[36] We are also now in a position to evaluate the controls

on relative rock uplift rates on either side of the orogen.

Figure 5. Relationships among channel profiles, the regional mean topographic gradient, and relative
erosion rates. (a) Relationship between Rf /L and the regional mean topographic gradient from a
combination of natural landscapes (pro-wedge and retro-wedge slopes of the Taiwan Central Range and
Indo-Burman Range from Figure 1 are shown with crosses; solid circles are the mean of three to four
measurements in the largest drainage basins) and modeled landscapes (Geomorphic/Orogenic Landscape
Evolution Model) (open diamonds; solid squares are the mean of three to four measurements in the
largest drainage basins). The line of 1:1 correspondence is shown (solid). Two examples (one modeled
and the retro-slope of the Taiwan Central Range) fall below the 1:1 line and are examples with relief so
extreme that hillslopes and colluvial channels account for a significant proportion of the total relief.
(b) Relationship between the mean topographic gradient and trunk channel length (L) for steady state
channel profiles eroding at the same rate. Larger basins have greater drainage areas and thus can erode
faster at the same regional mean topographic gradient.
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Noting that Cp/Cr = Kp/Kr and substituting a = hm � qn and
b = n into equation (8), we find that

f ¼ Up

Ur

¼ Kp

Kr

tanap

tanar

� �n�hmþqn

: ð26Þ

Equation (26) can also be found by taking the ratio of
equations (18) and (19) and noting that Rp � Rr is required
by geometry. Thus the geometric constraints of a two-sided
orogenic wedge at critical taper and the orographic
distribution of precipitation (represented by differences in
the coefficient of fluvial erosion (K) on either side of the
wedge) together dictate the relative rock uplift rates on the
pro-wedge and retro-wedge sides of the orogen, and
therefore the partitioning of mass flux through the pro-
wedge and retro-wedge (l, equation (9)), in a simple,

predictable manner. The implications of this relation for the
relative strength of the coupling among steady state orogen
width, rock uplift rate, and orographically and lithologically
controlled erosional efficiency on both the pro-wedge and
retro-wedge sides of the orogen will be discussed in the
section on nonuniform erosional efficiency (section 6.2).

6.1. Uniform Erosional Efficiency

[37] Where the coefficient of erosion is equal on both sides
of the wedge (Kp = Kr), the dynamics of the wedge can be
fully described using the relations for the pro-wedge only
(equations (24) and (25)) because the partitioning of strain
between the pro-wedge and retro-wedge is set by wedge
geometry (tan ap, tan ar) and the exponents in the bedrock
channel incisionmodel alone (h,m, and n in equation (12)), as
seen in equations (26) and (9). Further, because l is fixed in
this scenario, the degree to which material eroded off the pro-
wedge is recycled back into the orogen (x in equations (3),
(24), and (25)) only has the effect of changing the total
accretionary flux and does not influence system response to
changes in either climate or the far-field tectonic influx.
[38] The implications of the analysis above for the

dynamic coupling between climate and tectonics are illus-
trated in Figures 7–9 and can be distilled by substituting
typical ranges of model exponents h (1.6–1.8), m (.3–1), n
(.67–2), and q (0.11–0.20) (reported, for instance, by Hack
[1957], Hancock et al. [1998], Tucker and Whipple [2002],
Whipple et al. [2000], and Whipple and Tucker [1999]):

W / R / K� 0:4�0:7ð ÞF0:4�0:7
A ð27aÞ

U / K0:4�0:7F0:3�0:6
A : ð27bÞ

Thus where Kp = Kr, orogen width and topographic relief
are equally dependent on the inverse of erosional efficiency
(1/K) and the tectonic accretionary flux (FA) (Figures 7a and
8a). Rock uplift rate, however, is actually more sensitive to
erosional efficiency than to accretionary flux for most
values of the erosion law exponents h, m, and n (Figures 7b
and 8b). Recall from equation (7) that steady state rock
uplift is more strongly controlled by erosional efficiency
than by accretionary flux whenever a < 1 or hm � qn < 1.
Given typical values of h (�1.7) and m/n (�0.5) and the
relation between q and hm/n (equation (16a)), the condition
a < 1 is equivalent to n < 1.4, which, as noted in section 5.3,
includes most of the expected range of this parameter [e.g.,
Whipple et al., 2000]. However, as noted in section 5.3,
internal feedbacks among topography, incision rate, and the
efficiency of incision may be manifest as higher effective
values of n. As such, the effect of these internal feedbacks,
where present, will be to decrease the sensitivity of steady
state orogen width to the FA/K ratio (equation (24)) and to
enhance the relative dependence of rock uplift rate on
accretionary flux (equation (25)).
[39] For reasonable parameter values, erosion rate

(and therefore steady state rock uplift rate) is predicted
to be higher on the steeper retro-wedge under conditions
of uniform erosional efficiency (Kp = Kr). Recall from
equation (8) that this holds if b > a or n > hm � qn, which,
using equation (16a), can be shown to reduce to m/n 
 0.8.
The m/n ratio for fluvial erosion processes is predicted to

Figure 6. Illustration of how relations for mass balance
and orogen-scale erosion rate combine to define the
steady state wedge width (and therefore relief) and rock
uplift (or, equivalently, erosion) rate (intersection of
curves indicates the steady state solution; see thin dashed
lines). (a) Illustration of how steady state wedge width
and steady state rock uplift rate respond to differences in
erosional efficiency (here qualitatively labeled as ‘‘wet’’
and ‘‘dry’’ for high and low erosional efficiencies,
respectively). Arrows emphasize the narrowing and
acceleration of rock uplift accompanying a transition
from ‘‘moderate’’ to ‘‘wet’’ conditions. (b) Illustration of
how both wedge width and steady state rock uplift rate
respond to differences in accretionary flux (here labeled
as ‘‘fast’’ versus ‘‘slow’’ tectonic convergence rates).
Arrows emphasize the combined widening and accelera-
tion of rock uplift accompanying a transition from
‘‘moderate’’ to ‘‘fast’’ convergence rate.
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be �0.5 [Whipple and Tucker, 1999], so the finding that
higher erosion and rock uplift rates are expected on the
retro-wedge under uniform climatic and lithologic condi-
tions is quite robust.
[40] It is clear that an increase in erosional efficiency

(increasing K) must induce a reduction in steady state crest
elevation and fluvial relief (Figure 8), although the associ-
ated dynamic increase in rock uplift damps this effect
compared to expectations under the assumption that rock
uplift rate is an independent, externally forced variable [see
Whipple et al., 1999]. The relief of active orogenic wedges
at critical taper cannot be increased by uniform increases in
erosional efficiency (Figure 8). This result carries an im-
portant implication for global relations between erosion rate
and topographic relief [e.g., Ahnert, 1970; Montgomery and
Brandon, 2002; Pazzaglia and Brandon, 1996]: Whereas
data from a suite of otherwise similar steady state orogens
with different accretionary influx rates would exhibit the
expected positive correlation between erosion rate and relief
(Figure 9a), data from a suite of otherwise similar steady
state orogens in different climate zones (or with different
rock erodibilities) would exhibit an inverse relation between
erosion rate (or rock uplift rate) and relief (Figure 9b).

6.2. Nonuniform Erosional Efficiency

[41] System response to nonuniform changes in erosional
efficiency (Kp 6¼ Kr) is more complex because the partition-

ing of strain and exhumation (represented by l, the fraction
of the accretionary flux eroded off the pro-wedge) between
the pro-wedge and retro-wedge is strongly influenced by the
Kp/Kr ratio (equations (26) and (9)). Consequently, steady
state orogen width and rock uplift rates (Up, Ur) show
different sensitivities to changes in erosional efficiency on
the pro-wedge and retro-wedge sides of the orogen. In
addition, the sensitivity of the system to changes in ero-
sional efficiency (Kp or Kr) is importantly modulated by x,
the proportion of material eroded off the pro-wedge that is
recycled into the orogen and contributes to the total accre-
tionary flux (FA): For x 6¼ 0, any change in l directly
influences the mass flux through the orogen (equations (3a),
(24), and (25)). Note that l is most sensitive for changes in
either Kp or Kr when Kp/Kr < 1 (Figure 10).
[42] We can explore system sensitivity to the Kp/Kr ratio

and the recycling of material eroded off the pro-wedge (x) by
examining the limiting cases of complete recycling (x = 1)
and no recycling (x = 0) and comparing these to the case of
uniform erosional efficiency (equations (24)–(27)). We may
anticipate that the change in the influence of Kp relative to
the uniform erosional efficiency scenario discussed in
section 6.1 will be most exaggerated by the limiting case
with complete recycling. For x = 1, equations (24) and (25)
can be reduced to write Up, Ur, Wp, and Wr as power
functions of both Kp and Kr because l/1� l in equation (3a)

Figure 7. (a) Crest elevation (or, equivalently, topographic
relief or wedge width) as a function of accretionary flux
(plotted as convergence rate for a constant thickness of
incoming material) for different values of the slope
exponent (n) from the stream power river incision model.
(b) Steady state rock uplift (or, equivalently, erosion) rate as
a function of accretionary flux (plotted as convergence rate
for a constant thickness of incoming material) for different
values of the slope exponent (n) from the stream power river
incision model.

Figure 8. (a) Crest elevation (or, equivalently, topographic
relief or wedge width) as a function of erosional efficiency
(normalized to a reference value of K, not to the K for the
retro-wedge) for different values of the slope exponent (n)
from the stream power river incision model. (b) Steady state
rock uplift (or, equivalently, erosion) rate as a function of
erosional efficiency (normalized to a reference value of K,
not to the K for the retro-wedge) for different values of the
slope exponent (n) from the stream power river incision
model.
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reduces to Kp/Kr (tan ap/tan ar)
n�hm+qn�1 (assuming l 6¼ 1

or, equivalently, that Kr > 0 as in this case the wedge would
grow without bound; see equation (3a)):

Wr / Wp / K0
pK

�1
hmþ1�qn
r ; ð28aÞ

Ur / K0
pK

1
hmþ1�qn
r ; ð28bÞ

Up / KpK
� hm�qn

hmþ1�qn
r : ð28cÞ

Note that equations (28a) and (28c) have the same form as
equations (24) and (25) for the case Kp = Kr, respectively, as
required.
[43] Interestingly, in this scenario (x = 1) the width (or

relief) of the orogen and the rock uplift rate on the retro-
wedge are entirely dictated by the efficiency of erosion on the
retro-wedge, and their sensitivity is identical to that of either a
one-sided wedge or one in which erosional efficiency is
uniform. This may at first seem counterintuitive because
the total accretionary flux into the system is obviously very
sensitive to the erosional efficiency on the pro-wedge.
However, the influence of the additional influx due to

recycling is completely absorbed in the pro-wedge itself
(for x = 1, FEr

= FA0
for all combinations of Kp and Kr):

There is therefore a direct, linear relationship between steady
state rock uplift rate and erosional efficiency on the pro-
wedge (Kp). As a result, the retro-wedge is completely
unaffected by erosion on the pro-wedge (equations (28a)
and (28b)). Conversely, Up actually decreases strongly with
increasing Kr, despite the commensurate reduction in wedge
width (equations (28a) and (28b)), because enhanced erosion
on the retro-wedge reduces l and therefore strongly reduces
the total mass flux into the orogen (equation (3a)).
[44] For all other cases (x 6¼ 1), equations (24) and (25)

do not reduce to power law functions of Kp and Kr. From
inspection of equations (24)–(28) and Figure 10, we find
that for typical values of h, m, n, and q, nonuniform
erosional efficiency results in (1) a reduction of the sensi-
tivity of orogen width (relief) and retro-wedge rock uplift
rate to Kp (slight reduction for x = 0, extreme for x = 1) and
Kr (moderate reduction for x = 0, no reduction for x = 1),
(2) an increase in the sensitivity of pro-wedge rock uplift
rate to Kp (slight increase for x = 0, extreme for x = 1),
(3) an increase in the sensitivity of retro-wedge rock uplift
rate to Kr (moderate increase for x = 0, no increase for
x = 1), and (4) a reversal to an inverse relation (power law
with negative exponent) between pro-wedge rock uplift rate
and Kr (weakly inverse for x = 0, strongly inverse for x = 1).
Up decreases in response to an increase in Kr, even for x = 0,
because the decrease in the fraction of material eroded off
the pro-wedge (l) is greater than the decrease in Wp:
Material flux is very strongly drawn to the retro-wedge in
response to an increase in Kr. In general, for x � 1, whereas
wedge width (and therefore topographic relief) is most
sensitive to Kp, retro-wedge rock uplift rate is most sensitive
to Kr. An interesting implication is that for x � 1, it is
plausible that a concentration of erosion on the retro-wedge
(i.e., decreasing rainfall on the pro-wedge while increasing
rainfall on the retro-wedge) could result in both an increase
in retro-wedge rock uplift rate and a slight increase in
topographic relief.

7. Kinematic Solution for Particle Velocities
Within the Wedge

[45] In this section we present a generalization ofDahlen’s
[1988] analytical kinematic solution for the velocity field
within a deforming wedge at critical taper. This generaliza-
tion consists of an extension to nonuniform erosion (either
increasing or decreasing toward the crest of the range)
and to a two-sided wedge rather than the one-sided wedge
of Dahlen’s solution. The solution presented here is
similar to that by Pazzaglia and Brandon [2001] and Batt
et al. [2001] for a one-sided wedge. The extension to a two-
sided wedge is achieved by solving for two back-to-back
wedges that, in combination, are in steady state (material
passes out the back of the pro-wedge and into the retro-
wedge). The predicted velocity field provides a powerful
illustration of the influence of the Kp/Kr ratio on particle
trajectories through, and strain partitioning within, the
deforming wedge. Differences in the internal velocity field
give rise to different particle paths and thus different
pressure-temperature-time histories, which are also best
illustrated using this kinematic solution [see Barr and

Figure 9. (a) Crest elevation (or, equivalently, topographic
relief or wedge width) plotted against rock uplift rate (or,
equivalently, erosion rate) as accretionary flux varies with
erosional efficiency held constant, shown for different
values of the slope exponent (n) from the stream power river
incision model. (b) Crest elevation (or, equivalently,
topographic relief or wedge width) plotted against rock
uplift rate (or, equivalently, erosion rate) as erosional
efficiency varies with accretionary flux held constant,
shown for different values of the slope exponent (n) from
the stream power river incision model.
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Dahlen, 1989; Dahlen and Barr, 1989; Dahlen and Suppe,
1988]. Moreover, while section 6 relied on the assumption
of spatially uniform erosion, the relaxation of that constraint
allowed here lets us qualitatively explore the implications of
various factors that could arguably cause a nonuniform
distribution of erosion, such as intrabasin orographic pre-
cipitation patterns [Roe et al., 2002, 2003], sediment flux
and grain size controls on river incision rates [Sklar and
Dietrich, 1998, 2001; Tomkin et al., 2003; van der Beek and
Bishop, 2003;Whipple and Tucker, 2002], debris flow scour
[Stock and Dietrich, 2003], and possible glaciation at high
elevation.
[46] Dahlen [1988] used a simple kinematic method to

calculate the velocity everywhere in a deforming shallow
taper wedge with erosion and no underplating. He took
advantage of a somewhat simplified wedge geometry,
assuming that the material enters the wedge at the toe,
parallel to the surface slope. Thus our coordinate system for
this calculation is aligned along the top surface of the
wedge. Following Dahlen [1988], we use a slightly modi-
fied pro-wedge geometry with width (W0

p = Wp � x0), total
toe thickness (H0), and a total taper equal to the sum of the
surface and basal slopes (a + b) such that x0 = H0/tan (a + b)
(Figures 3 and 11). Material enters the wedge through the
toe at a rate Vx and exits though the top according to the
specified erosion pattern E(x). Total toe thickness H0

includes any recycled material derived from erosion off
the pro-wedge such that FA = H0Vx (see equation (3) and
Figure 11). We consider power law erosion patterns with the
forms E(x) = g(x � x0)

c and E(x) = g(W0 + x0 � x)c for
erosion rate increasing and decreasing toward the divide,
respectively, where c is the power law exponent and g is the
erosion intensity parameter (m1�c yr�1), chosen such that

the average erosion rate between x0 and x0 + W0, �E =
g(c + 1)�1(W 0)c (for either case), equals Up (equation (25))
and similar for the retro-wedge. Note that for all calculations
here, x0 is very small such that mass balance is maintained.
The purpose of introducing this relation is to explore the
consequences of a nonuniform pattern of erosion; mean
erosion rates are still governed by the orogen-scale erosion
rule developed above (equation (23)). Thus with the uniform
erosion assumption used earlier now relaxed, the statement
of mass balance for the two-sided wedge (equation (2)) can
be rewritten:

gp ¼
cþ 1ð ÞlFA

Wp � x0
� �cþ1

; gr ¼
cþ 1ð Þ 1� lð ÞFA

Wcþ1
r

; ð29Þ

where Wp is given by equation (24) and Wr can be derived
by combining equations (24) and (4). Equation (29) reduces
to equation (2) for uniform erosion (c = 0) and x0 = 0, as
required.
[47] Following Dahlen [1988], we can calculate the

velocity in a thin wedge of material by conserving mass
and matching velocity boundary conditions. We assume that
the wedge material is incompressible and that the density is
constant in time and space. Thus we can write mass
conservation as

@u

@x
þ @v

@y
¼ 0; ð30Þ

where u and v are the horizontal and vertical components of
the velocity field, respectively. At steady state the amount of
material coming in should be equal to the amount eroded off
the top. For the case of the one-sided wedge considered by

Figure 10. Two-sided wedge sensitivity to the orographic distribution of precipitation or differences in
rock erodibility (Kp/Kr ratio). (a) x = 0 (no sediment recycling), Kr variable. (b) x = 0 (no sediment
recycling), Kp variable. (c) x = 1 (complete recycling), Kr variable (see equation (28). (d) x = 1 (complete
recycling), Kp variable (see equation (28)). All variables are normalized to their value at Kp/Kr = 1.
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Dahlen [1988], but with a power law distribution of erosion,
this mass balance constraint can be written as

FA ¼
Zx0þW 0

x0

g x� x0ð Þcdx ¼ gW 0cþ1

cþ 1
; ð31Þ

where FA includes any recycled sediment eroded off the
pro-wedge (equation (3)). For the case of uniform erosion
(c = 0) treated by Dahlen [1988], equation (31) reduces to
FA = _eW0, where we have set g = _e to coincide with Dahlen’s
[1988] notation. The case with c = 1 for a one-sided wedge
was treated by Dahlen and Suppe [1988] and Dahlen and
Barr [1989]. We will return to the question of mass balance
for a two-sided wedge below.
[48] The horizontal velocities at the boundaries are

satisfied by

FA ¼
Zx

x0

g x0 � x0ð Þcdx0 þ ux aþ bð Þ ¼ g x� x0ð Þcþ1

cþ 1
þ ux aþ bð Þ

ð32aÞ

and

FA ¼
Zx

x0

g W 0 þ x0 � x0ð Þcdx0 þ ux aþ bð Þ

¼ � g

cþ 1
W 0 þ x0 � xð Þcþ1�W 0cþ1

h i
þ ux aþ bð Þ ð32bÞ

for erosion rate increasing and decreasing toward the divide,
respectively. Equations (32a) and (32b) ensure that the
horizontal velocity at the toe is the same as the input
velocity u(x = x0) = Vx and that it vanishes when all material
accreted at the toe has been eroded. Here we have made the
shallow taper approximation H0/x0 = tan (a + b)  a + b for
small a + b and have assumed that there is no vertical
variation in u, the horizontal component of the velocity
field. Again, equation (32) is a more general form of
Dahlen’s [1988] uniform erosion formulation FA = _e (x �
x0) + ux(a + b). We can find the horizontal velocity field

inside the wedge by solving equation (32) for u(x). This
gives

u xð Þ ¼ FA � g cþ 1ð Þ�1
x� x0ð Þcþ1

x aþ bð Þ ð33aÞ

and

u xð Þ ¼
FA þ g cþ 1ð Þ�1

W 0 þ x0 � xð Þcþ1�W 0cþ1
h i
x aþ bð Þ ð33bÞ

for erosion rate increasing and decreasing toward the divide,
respectively. After differentiating equation (33) with respect
to x and substituting the result into equation (30), we can
solve equation (30) for @v/@y, integrate with respect to y,
and apply the top surface boundary condition v(x, y = 0) =
�g (x � x0)

c or v(x, y = 0) = �g (W 0 + x0 � x)c to give the
vertical component of the velocity field:

v x; yð Þ ¼ x�2FA � g cþ 1ð Þ�1
x�1 x� x0ð Þc x�1 x� x0ð Þ � cþ 1ð Þ½ �

aþ b
� y� g x� x0ð Þc

ð34aÞ

and

v x; yð Þ ¼g W 0 þ x0 � xð Þc

aþ bð Þx y

þ
FA þ

g

cþ 1
W 0 þ x0 � xð Þcþ1�W 0cþ1

h i
aþ bð Þx2 y

� g W 0 þ x0 � xð Þc ð34bÞ

for erosion rate increasing and decreasing toward the divide,
respectively.
[49] At this point in the solution for the velocity field we

have yet to insist that thewedge as awhole is at steady state. If
we enforce steady state for a one-sided wedge by substituting
in equation (31), equation (34) reduces to Dahlen’s [1988]
solution for the case of uniform erosion (c = 0; g = _e).
Retaining the general formulation of equation (34) that does
not require steady state for a one-sided wedge, however,
allows us to combine the solution for two back-to-back
wedges (where material may pass through the back of the
pro-wedge and into the retro-wedge) to find the solution for a
two-sided wedge at steady state.
[50] To model the internal deformation of a two-sided

wedge, we combine the solutions for two nonsteady state
wedges. The approach allows us to maintain a solution
where the horizontal velocities vary smoothly, while the
vertical velocities may accommodate rather abrupt changes
in response to the change in erosion pattern where the two
wedges meet. We enforce mass balance for the whole
system; that is, the input flux is balanced by the flux of
material out of the top of the model, regardless of the spatial
pattern of erosion. The total mass balance for a two-sided
wedge is given by equation (29) above. For simplicity, we
consider the case where accretionary influx is entirely into
the pro-wedge side (see Figure 11).
[51] We now have enough relations to ensure that mass is

balanced in the system so long as the geometry of the two
wedges is compatible. We make sure that this is the case by

Figure 11. Definition sketch for kinematic model of
internal deformation of a two-sided wedge, after Dahlen
[1988] and Dahlen and Suppe [1988]. Note that H0 includes
any recycled material eroded off the pro-wedge such that FA=
H0Vx. a + b is the total taper of the wedge, which is
approximated for the kinematic solution only as having no
surface topographic expression.
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insisting that the heels of the two wedges meet at the
deepest part (Figure 11):

H 0
p þW 0

p tan aþ bð Þp¼ Wr tan aþ bð Þr: ð35Þ

For the scenario considered here, there is no influx through
the toe of the retro-wedge, so we typically let H0

r = 0. With
the relationships defined above we can construct the
velocity field inside a steady state two-sided wedge for
both uniform (c = 0) and power law erosion cases. We can
then readily integrate numerically to calculate particle paths
and derive pressure-time histories for two-sided orogens.
This could be coupled with equations for the steady state
temperature distribution to determine the full pressure-
temperature-time histories for particles traveling through
this type of wedge [see Barr and Dahlen, 1989; Barr et al.,
1991; Batt and Brandon, 2002; Batt et al., 2001; Dahlen
and Suppe, 1988]. Although we have assumed here that
both sides of the wedge experience the same type of erosion
pattern, this constraint can be relaxed by replacing the
common c with a separate one for both the pro-wedge and
retro-wedge.
[52] Figures 12–14 illustrate the relation between the

pattern of erosion (pro-wedge versus retro-wedge erosivity
reflecting orographic focusing; uniform versus nonuniform

erosion) and particle trajectories through the orogen and are
discussed in section 8.

8. Discussion

8.1. Orogen-Scale Erosion Rule

[53] The orogen-scale erosion rule derived here (equation
(23)) is a general result that is potentially useful for one-
dimensional coupled tectonic and surface process geody-
namic models such as those developed by Beaumont et al.
[1996], Willett [1999a], and Beaumont et al. [2001]. Deri-
vation of equation (23) is the first formal defense of an
erosion rule in which regional denudation rates are propor-
tional to the mean topographic gradient at orogen scale. It is
important to note here that the erosion rate depends on the
orogen-perpendicular width of the erosional front (i.e., the
size of the drainage basins with headwaters at the divide
[see Hovius, 1996]) but does not necessarily increase with
distance from the divide, as is sometimes assumed [Hilley et
al., 2004; Willett, 1999a], because increasing drainage area
is offset by decreasing channel gradient. As mentioned in
section 5.2, it is inappropriate to simply apply rules devel-
oped for bedrock channels to a mean topographic profile
without defining the relation between channel longitudinal
profiles and the mean topographic gradient; doing so will
impart a strong spatial pattern to erosion rates that is
unrelated to any physical processes. As shown in

Figure 12. Internal velocity field and integrated particle trajectories for Kp/Kr = 1 and uniform erosion
patterns (c = 0). In all cases shown in Figures 12–14 the following conditions hold: (a + b)p = 10	, (a +
b)r = �35	, FA = 50 m2 yr�1, n = 1, m = 0.5, K = 0.00001 yr�1, q = 0, k* = 1, h = 1.67, ka = 6.69, dots
along particle trajectories demarcate 1 Ma time intervals, relative erosion rates are plotted as height above
the surface (dashed lines), zone of downward particle velocities (active burial) is shaded gray, particle
paths are not computed within the black-shaded wedge tip (note, however, x0 is a small fraction of the
black shaded region), and plots have no vertical exaggeration. (a) Reference case for comparison to all
other solutions. (b) Uniform increase in precipitation (or reduction of rock strength): doubling of both Kp

and Kr relative to the reference case.
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section 7, the erosion rate pattern can importantly influence
many aspects of orogen evolution, and care is required in the
formulation of models that predict spatially nonuniform
erosion in steady state orogenic wedges: It is important to
get the right pattern and for the right reasons. Further, the
nonlinearity of the relationship between denudation rate and
mean topographic gradient is dictated by themechanics of the
processes of bedrock channel erosion and internal feedbacks
among topography, incision rate, and the efficiency of
incision [Hancock et al., 1998; Roe et al., 2002, 2003; Snyder
et al., 2000, 2003a, 2003b; Tucker, 2004; Whipple et al.,
2000;Whipple and Tucker, 1999]. Further, it is worth noting
that our finding that higher erosion and rock uplift rates are
expected on the retro-wedge under uniform climatic and

lithologic conditions implies that orogen-scale erosion rate
is not simply dependent on topographic relief but that it
depends more strongly on the mean topographic gradient
than on orogen width (i.e., b > a in equation (5), the general
erosion rule posited in section 4.3).

8.2. Coupling With Feedback Among Climate,
Erosion, and Tectonics

[54] As noted by previous workers, there is a strong,
direct coupling between climate (or erosional efficiency)
and tectonics [Avouac and Burov, 1996; Beaumont et al.,
1992, 2001; Dahlen and Suppe, 1988; Koons, 1995; Koons
et al., 2002; Willett, 1999a]. Our analysis has demonstrated
the fundamental nature of this coupling and has quantified

Figure 13. Internal velocity field and integrated particle trajectories for Kp/Kr 6¼ 1 and uniform erosion
patterns (c = 0). See Figure 12 and caption for reference case and standard wedge geometry. (a) Dry (or
resistant) retro-wedge (Kr = 0.5*standard; Kp/Kr = 2). (b) Wet (or weak) retro-wedge (Kr = 2*standard;
Kp/Kr = 0.5). (c) Dry (or resistant) pro-wedge (Kp = 0.5*standard; Kp/Kr = 0.5). (d) Dry (or resistant) pro-
wedge (Kp = 0.5*standard) and wet (or weak) retro-wedge (Kr = 2*standard; Kp/Kr = 0.25).
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its strength in frictional orogens, at least to first order.
Although erosion does not build mountains, it does funda-
mentally influence the size, shape, and geodynamics of
active orogens. At orogen scale, erosion drives rock uplift.
This statement is explicitly limited to isostatically compen-
sated orogenic wedges and cannot in general be said for
rock uplift on single structures such as occurs in some well-
studied field areas such as the King Range [Merritts and
Bull, 1989; Merritts and Vincent, 1989; Snyder et al., 2000,

2003a], the San Gabriel Mountains [Blythe et al., 2000], the
Siwalik Hills [Hurtrez et al., 1999; Kirby and Whipple,
2001; Lague and Davy, 2003; Lavé and Avouac, 2000], and
Wheeler Ridge [Keller et al., 1998, 2000; Mueller and
Suppe, 1997]. Steady state orogen width, cross-sectional
area, and topographic relief are equally controlled by the
inverse of the erosional efficiency (1/K) and by the accre-
tionary flux (FA) (equations (24) and (27a); Figures 7a
and 8a). Remarkably, steady state rock uplift rate is more

Figure 14. Internal velocity field and integrated particle trajectories for nonuniform erosion patterns
(c 6¼ 0) but with Kp/Kr = 1. See Figure 12 and caption for reference case and standard wedge geometry.
(a) Erosion decreasing linearly toward the divide (c = 1). (b) Erosion decreasing nonlinearly toward the
divide (c = 2). (c) Erosion increasing linearly toward the divide (c = 1). (d) Erosion increasing nonlinearly
toward the divide (c = 2).
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strongly controlled by erosional efficiency than by the
accretionary flux for most values of the erosion law expo-
nents h, m, and n (equations (25) and (27b); Figures 7b
and 8b). However, internal feedbacks among topography,
incision rate, and the efficiency of incision (e.g., narrowing
of channel width in response to rapid incision, changes in
channel bed state, orographic enhancement of precipitation,
diminishing importance of the critical shear stress for
incision at high incision rates, etc.) will act to dampen
the coupling among orogen size, rock uplift rate, and
erosional efficiency. Thus it can be said that for a given
tectonic setting and material properties, climate, or, more
precisely, erosional efficiency, controls steady state orogen
width, range crest elevation, topographic relief, crustal
thickness, and rock uplift rate. Moreover, the details of
the active erosion processes are clearly important as their
nonlinearity governs both the relation between climate
variables and K and the sensitivity of wedge width, relief,
and rock uplift rate to both K and the accretionary flux FA
(see equations (24)–(27a); Figures 7–9).
[55] An increase in steady state rock uplift rate in re-

sponse to a more erosive climate, however, does not
indicate an increase in the total erosional efflux, which by
definition just balances the incoming accretionary flux (with
the only complication that the total accretionary flux
includes the fraction of eroded material that is recycled
back into the orogenic wedge (see equation (3a))). Erosion-
ally induced enhancement of rock uplift rate occurs only by
focusing deformation, be it through narrowing the orogen or
through concentrating deformation either in a weakened
shear zone [e.g., Beaumont et al., 1996] or on one side of
orogen or the other in response to prevailing winds and
the resulting orographic distribution of precipitation [e.g.,
Willett, 1999a]. Given that for a given accretion rate, faster
rock uplift rates are associated with narrower orogens,
steady state topographic relief is reduced in response to an
increase in erosional efficiency (K), despite the commensu-
rate increase in rock uplift rate (Figures 8a and 9b). This
finding generalizes and extends the analysis of Whipple et
al. [1999]. There are two possible exceptions: (1) if x = 1,
whereas steady state relief is independent of pro-wedge
erosional efficiency (Kp), pro-wedge rock uplift rate
increases linearly with Kp; (2) if an increase in erosional
efficiency on the retro-wedge is combined with a decrease
on the pro-wedge, it is possible that wedge size and
topographic relief increase (or remain constant), despite
the accelerated rate of erosion on the retro-wedge (only
possible for x � 0). A scenario illustrative of the latter is
shown in Figure 13d (compare to Figure 12a). Any such
increase in topographic relief is minor (a few percent
maximum), however, and is only allowed by a very narrow
range of conditions.

8.3. Sedimentation Rates and the Role of Quaternary
Climate Change

[56] The past decade has seen much interest in the
possible influences of Quaternary climate change on ero-
sion, sedimentation rates, and topographic relief [e.g.,
Brocklehurst and Whipple, 2002; Brozovic et al., 1997;
Gilchrist and Summerfield, 1991; Gilchrist et al., 1994;
Molnar, 2001; Molnar and England, 1990; Montgomery,
1994, 2002; Montgomery and Greenberg, 2000; Roe et al.,

2003; Schmidt and Montgomery, 1995; Small and
Anderson, 1995, 1998; Whipple et al., 1999; Zhang et
al., 2001]. Here we describe implications of our findings
for this debate. First, although a change in climate cannot
change total steady state erosional efflux from an active
orogen, the transition from one steady state condition
to another will involve a considerable change in the
cross-sectional area of the orogenic wedge (wedge cross-
sectional area � W2 � K�(0.8�1.4)). Thus a potentially
large volume of ‘‘excess’’ sediment will be produced in
response to a change in erosional efficiency (K). The
commensurate increase in the sedimentation rate depends
on the system response timescale [Kooi and Beaumont,
1996; Pazzaglia and Brandon, 1996; Whipple, 2001;
Whipple and Tucker, 1999]. This provides a plausible
explanation for the heightened sedimentation rates in some
areas during the Quaternary cited by Molnar and England
[1990] and Zhang et al. [2001]. However, if Quaternary
climate change produced a significant increase in erosivity
(due to the onset of glaciation, oscillations between glacial
and nonglacial climates, increased storminess, etc.), our
model predicts that active orogenic wedges should have
been shrinking during the Quaternary at a rate commen-
surate with the excess sediment produced. This constitutes
a testable hypothesis (past orogen widths should prove
more easily determined than paleoelevation), at least in
principle. Further, the total amount of excess sediment
produced potentially provides a constraint on the change
in wedge volume and therefore the magnitude of the
effective change in erosional efficiency (K) associated with
Quaternary climate change.

8.4. Sensitivity to the Orographic Distribution of
Rainfall

[57] Our analysis has shown that the relative efficiency of
erosion on the pro-wedge and retro-wedge sides of the
orogen (Kp/Kr ratio) exerts a fundamental control on steady
state wedge width, topographic relief, and patterns of inter-
nal deformation within the wedge (Figures 10 and 13).
Equations (26) and (9) show that the relative rates of
exhumation on the pro-wedge and retro-wedge sides of the
orogen are governed directly by the Kp/Kr ratio, which is
determined in part by the orographic distribution of precip-
itation on windward versus leeward slopes and in part by
rock strength, which itself is influenced by particle paths
through the orogen and the associated patterns of internal
deformation. As discussed in section 6.2, system sensitivity
to the orographic distribution of precipitation is also impor-
tantly influenced by the efficiency of sediment recycling into
the orogen (restricted to the pro-wedge in our analysis)
(compare equations (27) and (28)). This follows because
the erosional efflux off the pro-wedge feeds back into the
total accretionary flux (see equation (3a)). In the extreme
case of total recycling (x = 1), there is a direct, linear,
causative relation between pro-wedge erosional efficiency
(Kp) and the pro-wedge rock uplift rate (equation (28)). If x =
1, however, the retro-wedge erosional efflux must equal the
far-field tectonic influx (FA0

) for all combinations of Kp and
Kr. Accordingly, in this scenario, wedge width, range crest
elevation, topographic relief, and retro-wedge rock uplift
rate are all dictated directly by Kr, the erosional efficiency on
the retro-wedge (Kp has no influence).
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[58] The influence of the macroscale pattern of erosion
(pro-wedge versus retro-wedge erosion rate) is best illus-
trated by the changing patterns of internal deformation, as
shown by our kinematic solution for the velocity field
within the wedge (Figures 12a and 13). The relative rates
of exhumation on the pro-wedge and retro-wedge naturally
dictate the percentage of the total accretionary flux that is
eroded off either side of the orogen (equation (9)). This, in
turn, dictates the mass flux pattern and therefore for frontal
accretion, governs particle trajectories, P-T-t paths, and the
pattern of exposed rocks in terms of metamorphic grade [e.g.,
Barr and Dahlen, 1989; Barr et al., 1991; Beaumont et al.,
1992; Dahlen and Suppe, 1988; Jamieson and Beaumont,
1988; Koons, 1987], as illustrated in Figures 12a and 13. A
component of underplating, and its spatial distribution,
could readily be added and would clearly also exert first-
order control on particle trajectories and P-T-t paths [e.g.,
Barr and Dahlen, 1989; Batt and Brandon, 2002; Dahlen
and Barr, 1989; Willett et al., 2001].

8.5. Sensitivity to Spatially Nonuniform Erosion

[59] Our mass balance formulation was written in terms
of the average rock uplift rate on the pro-wedge and retro-
wedge sides of the orogen. The relations we used for
equilibrium topography are strictly for uniform rock uplift
and therefore for uniform erosion rates on either side of the
orogen. Whereas this is consistent with typical stream
concavity indicies (q in equation (10)) and simple fluvial
erosion models (q = m/n for uniform erosion and the stream
power incision model used here), many factors may cause
erosion rates to vary systematically downstream along river
profiles with typical concavity indices (note that typical
river concavities and network topologies are consistent with
a linear mean topographic profile (see Figure 5)). These
factors include (1) the intrabasin distribution of orographic
precipitation [Roe et al., 2002, 2003]; (2) the frequency
of occurrence of erosive debris flows in channel headwater
segments [Stock and Dietrich, 2003]; (3) changing sedi-
ment size and/or supply relative to carrying capacity with
distance downstream [Sklar and Dietrich, 1998, 2001;
Tomkin et al., 2003; van der Beek and Bishop, 2003;
Whipple and Tucker, 2002]; (4) controls on channel width
[Hancock and Anderson, 2002; Montgomery and Gran,
2001; Suzuki, 1982]; and (5) highly efficient erosion
associated with possible glaciation in headwater channel
reaches [Brocklehurst and Whipple, 2002; Hallet et al.,
1996; MacGregor et al., 2000]. We have qualitatively
illustrated the potential orogen-scale influence of these
‘‘details’’ of the erosion process through our kinematic
solution for the deformation within the orogenic wedge
by relaxing the assumption of a spatially uniform erosion
rate. Figures 12a and 14 demonstrate that realistic patterns
of nonuniform erosion can significantly alter the internal
deformation field and resulting rock particle P-T-t paths.
This result strongly underscores the point raised earlier that
the details of the erosion process may significantly influ-
ence orogen evolution. Most coupled tectonic and surface
process models of orogen evolution use highly simplified
erosion rules and are therefore somewhat limited in their
predictive capability in this regard. However, many ques-
tions remain about the long-term modeling of erosion,
particularly as regards the above list of factors influencing

the spatial pattern of erosion. Further field and laboratory
study of these key issues is greatly needed.

8.6. Limitations

[60] Assumptions required in an analytical model such as
that presented here necessarily sacrifice generality for
clarity. There are important limitations to our model, both
in terms of the tectonic and erosional aspects of the
formulation. First and foremost, the strict adherence to the
self-similar geometry of frictional orogenic wedges at
critical taper is an end-member model, particularly given
our insistence that topographic taper be held invariant with
climate, accretionary flux, and wedge width. Systematic
variations in topographic taper with any of these variables
could change system response to first order. For example, if
there is a fixed rooting depth of the basal decollement, one
expects the slope of the decollement to decrease linearly
with wedge width [Hilley et al., 2004]. As a shallower
decollement requires a steeper topographic taper [Dahlen,
1984], this circumstance can be anticipated to cause steady
state erosion rate to increase more rapidly with wedge width
than in the constant decollement slope scenario considered
here [Hilley et al., 2004]. The implication is that exponents
in equations (5)–(8) and (24)–(27a) would be changed
somewhat (generally replace a with a + 1 or hm � qn + 1
with hm � qn + 2). Similarly, it is plausible that pore
pressures on the basal decollement vary with climate and/or
wedge width in a manner similar to that discussed by Saffer
and Bekins [2002] for submarine accretionary prisms.
Another important consequence of self-similar wedge
growth is that the asymmetry of the orogen is set; the
orographic distribution of precipitation can influence wedge
size, rock uplift rate, and strain partitioning within the
wedge but cannot cause migration of the drainage divide,
as has been discussed by Montgomery et al. [2001] for the
Andes and by Willett [1999a] and Willett et al. [2001] on
the basis of numerical simulations. The difference with the
model of Willett et al. [2001] is that while they proscribe the
uplift pattern and solve for wedge geometry free from
mechanical constraints, we enforce critical taper geometry
(holding basal decollement angle and frictional properties
constant) and solve for the deformation pattern, rock uplift
rate at the surface, and hence the U/Vx ratio that figures
prominently in their analysis.
[61] The restriction to purely frictional mechanics is

another important limitation of our analysis. We hasten to
point out, however, that the restriction to invariant frictional
properties is conservative; systems subject to positive feed-
back between erosion and rheology (for example, through a
thermally activated viscosity) will exhibit even stronger
coupling among climate, erosion, and deformation and
therefore a more sensitive dependence on the erosion rule
and the resulting pattern of erosion than shown here.
Orogens like the Himalaya/Tibet system appear to be a
prime example of this effect, as illustrated in recent numer-
ical simulations by Beaumont et al. [2001] and Koons et al.
[2002]. Even the archetypical Taiwan orogen is likely thick
enough and hot enough to be influenced by viscous effects
not modeled here [Willett, 1999b; Willett et al., 1993]. The
analytical solution presented here, however, may provide an
opportunity to systematically explore the degree to which
the onset of viscous deformation in the deeper and hotter
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parts of the orogenic wedge influence the nature and
strength of the feedbacks among climate, erosion, and
tectonics: The response of orogen width, rock uplift rate,
and strain partitioning to imposed patterns of erosional
efficiency predicted by existing coupled thermomechanical
and surface processes models (if modified to use the
orogen-scale erosion rule of equation (23) developed here)
could be quantitatively compared with expectations for
purely frictional wedges (equations (24)–(28)).
[62] Similarly, the stream power river incision model

appears here as a simple, phenomenonological placeholder
for more sophisticated models currently under development.
Many factors influence the effective values of the model
parameters K, m, and n in complex and as yet not fully
understood ways, involving adjustments in channel width
[Montgomery et al., 2002; Snyder et al., 2003a], bed
morphology [Massong and Montgomery, 2000], sediment
grain size and abundance [Sklar and Dietrich, 1998, 2001;
Whipple and Tucker, 2002], and the relative importance of
extreme events [Snyder et al., 2003b; Tucker, 2004; Tucker
and Bras, 2000]. Importantly, the quantitative relationship
between measurable climate parameters and K, the coeffi-
cient of erosion, remains elusive despite recent progress
[Snyder et al., 2003b; Tucker, 2004; Tucker and Bras,
2000], particularly given the short timescale of climate
change. Although much is revealed by the present analysis
in terms of these effective model parameters, there exists a
real potential for different effective values of exponents m
and n on either side of the orogenic wedge. Any such
difference would change steady state wedge size and, in
particular, strongly influence system sensitivity to the oro-
graphic distribution of precipitation (pro-wedge versus
retro-wedge side erosional efficiency). Finally, the approx-
imate empirical relationship between channel longitudinal
profiles and the regional mean topographic gradient breaks
down somewhat when relief is extreme and hillslopes/
colluvial channels become a significant fraction of the total
relief, as is evident in the data plotted in Figure 5. However,
a slight nonlinearity in this relationship will not much
influence the sensitivity of steady state wedge width and
rock uplift rate to erosional efficiency and accretionary flux.

9. Conclusions

[63] Major conclusions drawn from this work and ex-
plored in some depth in the discussion include the following.
[64] 1. For a given tectonic setting (far-field tectonic

influx and frictional material properties), erosional efficiency
controls steady state orogen width, relief, crustal thickness,
and rock uplift rate. System sensitivity to differences (or
changes) in climate, rock properties, and accretionary flux is
dictated by the details of the erosion law.
[65] 2. For uniform erosional efficiency (Kp = Kr), orogen

width and topographic relief are equally sensitive to the
inverse of the coefficient of fluvial erosion (1/K) and
accretionary flux (FA), scaling as power law relations with
exponents in the range 0.4–0.7 for typical stream power
river incision model parameters. Interestingly, rock uplift
rate is actually more sensitive to erosional efficiency than to
the accretionary flux for most combinations of model
parameters (U � K0.4�0.7FA

0.3�0.6). However, the net steady
state erosional efflux is, of course, unchanged. Net erosional

efflux only increases above the accretionary flux during
transients in which an increase in erosional efficiency drives
a reduction in the volume of material stored within the
orogenic wedge.
[66] 3. The dynamic response of rock uplift rate to a

change in erosional efficiency is due to a narrowing of the
orogenic wedge and thus a focusing of exhumation. There
can be no dynamic coupling between erosional efficiency
and rock uplift rate in an orogen of fixed width experiencing
homogeneous pure shear deformation.
[67] 4. As a direct consequence of the dynamic coupling

between erosional efficiency and rock uplift rate in a
critically tapered orogenic wedge, rock erodibility can
influence steady state erosion rate, contrary to field set-
tings where rock uplift rate is an independent, externally
forced parameter. In this commonly assumed scenario,
rock erodibility (and climate) can influence only steady
state topographic form, not the steady state erosion rate
[e.g., Whipple et al., 1999].
[68] 5. With two exceptions, steady state topographic

relief is always reduced by an increase in erosional effi-
ciency, despite the commensurate increase in rock uplift
rate. The two exceptions are (1) if x = 1, whereas steady
state relief is independent of pro-wedge erosional efficiency
(Kp), pro-wedge rock uplift rate increases linearly with Kp

and (2) if an increase in erosional efficiency on the retro-
wedge is combined with a decrease on the pro-wedge, it is
possible that wedge size and topographic relief increase (or
remain constant) despite the accelerated rate of erosion on
the retro-wedge (only possible for x � 0).
[69] 6. If Quaternary climate change has been associated

with a significant increase in erosional efficiency [Molnar,
2001; Molnar and England, 1990], a direct predictable
consequence is that active, well-developed (i.e., not in the
earliest stages of growth) orogenic wedges would have
shrunk, or would be shrinking, in size and would have
experienced real increases in rock uplift rate. Further, any
extra volume of sediment produced during the Quaternary
[Zhang et al., 2001] in principle provides a constraint on the
magnitude of the change in wedge cross-sectional area and
therefore on the magnitude of the change in the efficiency of
erosion (i.e., the change in K).
[70] 7. For frontal accretion with no underplating theKp/Kr

ratio (controlled by both climatic and rock property contrasts
between the pro-wedge and retro-wedge) sets the deforma-
tion pattern, time-averaged particle trajectories through the
orogen and thus P-T-t paths experienced during burial and
then exhumation. In addition, nonuniform erosional effi-
ciency (Kp 6¼ Kr) results in (1) a reduction of the sensitivity
of orogen width (relief) and retro-wedge rock uplift rate to
Kp (slight reduction for x = 0, extreme for x = 1) and Kr

(moderate reduction for x = 0, no reduction for x = 1), (2) an
increase in the sensitivity of pro-wedge rock uplift rate to Kp

(slight increase for x = 0, extreme for x = 1), (3) an increase in
the sensitivity of retro-wedge rock uplift rate to Kr (moderate
increase for x = 0, no increase for x = 1), and (4) a reversal to
an inverse relation (power law with negative exponent)
between pro-wedge rock uplift rate and Kr (weakly inverse
for x = 0, strongly inverse for x = 1).
[71] 8. Nonuniform erosion along channel profiles (i.e.,

more intense erosion concentrated near the range crest or
near the toe of the wedge) importantly influences particle
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paths, patterns of strain within the orogenic wedge, and,
presumably, the width of reset zones of thermochronometers
[see Batt et al., 2001; Willett and Brandon, 2002].

Notation

A upstream drainage area (m2).
a width exponent in general erosion rule.
b gradient exponent in general erosion rule.
C coefficient of erosion in general erosion rule

(m1�a yr�1).
c exponent in nonuniform erosion pattern rule.

E, _e average erosion rate (myr�1).
FA total accretionary flux per unit distance along strike

(m2 yr�1).
FA0

far-field accretionary flux per unit distance along
strike (m2 yr�1).

H thickness of incoming plate involved in deformation
(m).

H0 thickness of pro-wedge at x = x0 (m).
h distance exponent in Hack’s law.
K coefficient of fluvial erosion (m1�2m yr�1).
K0 coefficient of erosion in orogen-scale erosion rule

(m1�hm+qn yr�1).
ka coefficient in Hack’s law (m2�h).
k0 fluvial relief correction factor.
k* fluvial relief correction factor coefficient (m�q).
k1 proportionality constant between L and W.
k2 proportionality constant between Rf /L and tan a.
ks steepness index (m2q).
L main stem channel length (m).
m area exponent in stream power river incision model.
n slope exponent in stream power river incision

model.
q fluvial relief correction factor exponent.
Rf fluvial relief (m).
S local channel gradient.
SL local channel gradient at the mountain front.
U average near-surface rate of rock uplift relative to the

geoid (myr�1).
u horizontal component of particle velocity within

deforming wedge (myr�1).
Vx tectonic convergence velocity (myr�1).
v vertical component of particle velocity within

deforming wedge (positive downward) (myr�1).
W plan view wedge width (m).
W0 plan view width of wedge within domain of

kinematic solution (m).
x horizontal position coordinate (m).
xc distance from divide to fluvial channel head (m).
x0 length of truncated wedge tip in kinematic solution

(m).
y vertical position coordinate (positive downward)

(m).
a topographic taper angle (rad).
b dip of basal decollement (rad).
c geometric coefficient, fluvial relief (mhm/n�2m/n�q).
l fraction FA eroded off pro-wedge.
f ratio of pro-wedge to retro-wedge rock uplift rate.
g erosion intensity parameter (m1�c yr�1).
q concavity index.
x recycled fraction of material eroded off pro-wedge.

p subscript denotes pro-wedge variable.
r subscript denotes retro-wedge variable.
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